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Abstract 

Background: Alzheimer’s disease affects profoundly the quality of human behavior 
and cognition. The very broad distribution of its severity across various human subjects 
requires the quantitative diagnose of Alzheimer’s disease beyond the conventional 
tripartite classification of cohorts such as cognitively normal (CN), mild cognitive 
impairment (MCI), Alzheimer’s disease (AD). The unfolding of such broad distributions 
by the quantitative and continuous degree of AD severity is necessary for the precise 
diagnose in the cross-sectional study of different stages in AD.

Results: We conducted the massive reanalysis on MRI images of 761 human brains 
based on the accumulated bigdata of Alzheimer’s Disease Neuroimaging Initiative. 
The score matrix of cortical thickness profile at cortex points of subjects was con-
structed by statistically learning the cortical thickness data of 761 human brains. We 
also developed a new and simple algebraic predictor which provides the quantitative 
and continuous degree of AD severity of subjects along the scale from 0 for fully CN to 
1 for fully AD state. The mathematical measure of a new predictor for the degree of AD 
severity is presented based on a covariance correlation matrix of cortical thickness pro-
file between human subjects. One can remove the uncertainty in the determination of 
different stages in AD by the quantitative degree of AD severity and thus go far beyond 
the tripartite classification of cohorts.

Conclusions: We unfold the nature of broad distribution of AD severity of subjects 
even within a given cohort by the scale from 0 for fully CN to 1 for fully AD state. The 
quantitative and continuous degree of AD severity developed in this study would be a 
good practical measure for diagnosing the different stages in AD severity.
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Introduction
Alzheimer’s disease (AD) profoundly affects human health and behavior. The diagno-
sis of AD requires not only the identification of cohort that classify different tripartite 
stages of AD but also the estimation of the severity degree of AD for a given individual 
[1–5]. The symptoms of AD appear in various forms in the human body, behavior, and 
cognition, yet the direct anatomical evidences appear in the structural change within 
the brain [6–11]. Among these evidences is the degradation of the cortical thickness of 
human brain, which is one of the imprints of AD. Such physical change can be moni-
tored through the neuro-image, for example the magnetic resonance image (MRI) analy-
sis of the brain [12–17]. The anatomical degradation of the cortical thickness becomes 
more pronounced as the degree of AD severity becomes greater [13, 17].

Given the information of cortical thickness of human brains, previous studies have 
noted that the person-to-person fluctuations in cortical thickness of an individual 
may overwhelm the degradation in cortical thickness. In clinical cases, we frequently 
observed that the average cortical thickness of some cognitively normal people is thin-
ner than that of people with AD, which appears to contrast the conventional view. Also 
we recognized the ambiguity in what we should do if two different cohorts have a differ-
ence in the cortical thickness in brain regions that have little to do with AD. In principle 
we should construct some good determinants for judging the degree of AD severities of 
human subjects, but in practice we are confronted with the differences in cortical thick-
ness in regions of the cortex that are unrelated to the pathogenesis of AD. The abundant 
existence of such unrelated regions is an intrinsic source that increases the uncertainty 
of the AD determinants and hinders the appropriate construction of good classifier and 
predictor for AD.

In this study we developed a simple and straightforward algebraic predictor for pro-
viding the continuous and quantitative degree of AD severity of human subjects along 
the scale from 0 for fully CN to 1 for fully AD state. Instead of dealing with all 327,684 
vertices point on the whole cortex of a human brain, we strived to overcome the before 
mentioned obstacles and demonstrated that the consideration of a few hundred essential 
vertices were enough for distinguishing CN, MCI, AD cohorts each other. With cortical 
thickness data at these essential vertices of 1006 human brain images for control and 510 
human brain images for independent validation, we defined the machined-learned score 
matrix and the covariance correlation matrix between human subjects as a new set of 
classifier and predictor for AD severity.

Over the past decade, there have been developments in diagnosing CN/MCI/AD with 
various deep learning techniques, such as Deep Neural Network and Convolution Neu-
ral Network [18]. And the accuracy of the diagnosis by deep learning techniques has 
already reached a significant level. Raju et  al. [19] showed 97.77% accuracy for ADNI 
465 subjects using the Convolution Neural Network, and Albright [20] showed 86.6% 
accuracy for ADNI 1737 subjects using Deep Neural Network. Our results may not be 
satisfactory enough if we only compare the accuracy of the diagnosis. However, we have 
a significant advantage of discovering ROI in an intuitive way, performing diagnostics 
based on it, and providing severity degree for individual patients.

Our study suggests that unlike the conventional view that the degradation of the 
cortical thickness of human brain was sole responsible for AD, the singular valued 
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decomposition analysis of the score matrix developed in this study clearly revealed that 
the simultaneous consideration of both thinner and thicker cortical regions together 
compared to those of CN are important and very necessary for the precise diagnose of 
the AD severity. Based on a covariance correlation matrix of cortical thickness profile 
between human subjects, we could determine the quantitative and continuous degree 
of AD severity for a given subject even within a given cohort and also tell how much a 
subject is prone to CN, AD, or positioned at a particular stage in between. This study not 
only provided a straightforward algebraic determinant to analyzing the cortical thick-
nesses of human brains but also suggested quantitative measures by which one could 
estimate both the cohort and the severity degree of AD for a given new subject based on 
the neuro-images from the structural MRI. The MRI data of a new and larger number of 
human brains could also be machine-learned into this study in a systematic and robust 
manner, which would facilitate the better diagnose of AD with the different degree of 
severity.

Methods
Preparation of cortical thickness data from MRI of 1522 human brain images from ADNI

We selected 274 individuals (human subjects) who were identified as CN, 265 indi-
viduals with MCI, 125 individuals with AD from the ADNI-2 study of ADNI, and 97 
individuals with MCI from the ADNI-GO study of ADNI. A human brain image-data 
set of 1522 MR images from a total of 761 subjects was constructed, for each of which 
both 1.2-mm sagittal Magnetization Prepared Rapid Gradient Echo (MPRAGE) and 
MPRAGE_SENSE2 images were taken separately. Here, we note that the longitudinal 
study of AD is beyond the scope of this work. Therefore, we ignore the number of visits 
of subject required to perform any longitudinal study.

Partition 1516 MR images of human brains into four groups and determine the essential 

region‑of‑interest vertices for each group

We performed the FreeSurfer analysis to obtain the cortical thickness data at 327,684 
vertices on the cortex of a human brain [21, 22]. The cortical thickness at each vertex 
ranges from 0 to 5 mm. After eliminating those vertices at which cortical thickness infor-
mation was missing for any one of the 1522 MR images of human brains in the ADNI 
data set, 276,825 common vertices whose cortical thickness values are available for all 
1522 MR images were selected for our study. The average cortical thickness over 276,825 
vertices for each brain images was evaluated, and we divided 1516 values of average 
thickness into four groups (A-D) of different windows of average thickness except 6 val-
ues of that run out-of-bounds. Demographic characteristics of the average cortical thick-
ness of the four groups are listed in Table 1.

In order to assign subjects from each CN, MCI, and AD cohort into one of the four 
groups (A-D) of average cortical thickness, we employed the Z score criteria in select-
ing the region-of-interest (ROI) vertices and the essential ROI vertices on the cortex at 
which the distribution of cortical thickness of the CN cohort is distinguished from that 
of the AD cohort within each group of average cortical thickness. A similar procedure 
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is repeated for distinguishing the CN cohort from the MCI cohort and also the MCI 
cohort from the AD cohort:

Here, �tp,h∈k� is the average cortical thickness at a vertex point p averaged over the 
subject h who belongs to the k (one of CN, MCI, AD) cohort, and σp,h∈k is its standard 
deviation, and np,h∈k is the number of MR images belonging to the k cohort. The posi-
tive (negative) value of ZCN−AD

p  , for example, indicates that the distribution curve of the 
average cortical thickness of the CN cohort is right (or left)-shifted compared to that of 
AD cohort. And the bigger the absolute value of the Z score, the better distinguished the 
distribution curves of average cortical thickness of the cohorts. In this study, we identi-
fied ROI vertices satisfying the absolute value of the Z score larger than 1.5, and essential 
ROI vertices satisfying much higher cut-off Z scores (Additional file 1: Table S1).
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Table 1 Demographic characteristics of the groups

*Number of MRI images; †Average cortical thickness over the 276,825 vertices. AD Alzheimer’s disease, CN cognitively 
normal, MCI mild cognitive impairment

CN MCI AD

Group A

N* 136 155 13

Female (%) 60.3 53.5 30.8

Age, Mean (SD) 72.5 (5.3) 72.1 (5.1) 78.1 (5.0)

 < t > †, Mean (SD) 2.4580 (0.0477) 2.4549 (0.0415) 2.4676 (0.0539)

Group B

N 212 262 67

Female (%) 62.7 43.5 41.8

Age, Mean (SD) 73.0 (5.2) 73.7 (5.3) 76.7 (6.3)

 < t > , Mean (SD) 2.3516 (0.0293) 2.3429 (0.0266) 2.3491 (0.0269)

Group C

N 159 209 84

Female (%) 46.5 34.0 52.4

Age, Mean (SD) 74.0 (5.7) 75.3 (5.8) 76.9 (5.2)

 < t > , Mean (SD) 2.2566 (0.0290) 2.2573 (0.0278) 2.2455 (0.0298)

Group D

N 40 96 83

Female (%) 22.5 35.4 26.5

Age, Mean (SD) 78.1 (6.5) 76.2 (5.7) 77.4 (6.6)

 < t > , Mean (SD) 2.1514 (0.0389) 2.1448 (0.0433) 2.1373 (0.0520)
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Construction of a statistical score matrix for classifying subjects into one of CN, MCI, AD 

cohorts

Within each group of average cortical thickness, we constructed the statistical score 
matrix for determining a subject’s cohort as either CN, MCI, or AD [23]. First of all, 
tp,h∈k was transformed into the probability distribution matrix P(k)

p,m , which is a prob-
ability that the cortical thickness tp,h∈k at a vertex point p of the subject in k cohort is 
between (m− 1)� and m�:

Here, Δ = 0.2 mm, and cortical thickness index m runs from 1 to 30; this covers the 
cortical thickness from 0 to 6 mm. δ(x) is a Dirac delta function, and �(x) is a step 
function where �(x < 0) = 0;�(x ≥ 0) = 1 . Then, we defined the statistical score 
matrix S(k)p,m from P(k)

p,m in the following way:

Since 
∑

mP
(k)
p,m = 1 , S(k)p,m = −lnP

(k)
p,m − ln

∑

p1 and the second term are constants. The 
value of the statistical score matrix S(k)p,m varies depending on the cohort k; the smaller 
S
(k)
p,m is, the larger P(k)

p,m is.
With this statistical score matrix S(k)p,m , we employed a strategy for determining to 

which one of k cohorts a given subject would belong. First, we evaluated the averaged 
cortical thickness of a given subject over 276,825 vertices. Second, we assigned this 
subject to one of four groups (A-D) of average cortical thickness. Third, based on the 
preselected essential ROI vertices p for the assigned group, we determined the corti-
cal thickness index m’(p) at which the cortical thickness at an essential ROI vertex p 
is between (m− 1)� and m� . Then, for each k cohort, the total score S′

(k)  was cal-
culated by summing up S(k)p,m′

(p)   over the preselected essential ROI vertices p for the 
assigned group of the average cortical thickness, S′

(k) =
∑

p S
(k)
p,m′

(p) . Lastly, to which k 
cohort a given subject would belong was decided by a cohort which gives the mini-
mum score out of S’(CN), S’(MCI), S’(AD).

We, however, noted that the accuracy of both P(AD)
p,m  and S(AD)p,m  may become unsatis-

factory if the number of people in the AD cohort was less than that of the CN cohort 
and the MCI cohort (Table  1). In order to overcome the unsatisfactory nature of 
both P(AD)

p,m  and S(AD)p,m  , we employed the method of Kernel Density Estimation (KDE); 
namely, a Dirac delta function δ

(

t − tp,h
)

 in the definition of the probability distribu-
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p,m , is replaced by a kernel function f
(
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)
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Here, the relative ratio among coefficients al is 
a0 : a±1 : a±2 : a±3 : a±4 = 56 : 43 : 21 : 7 : 1 . The kernel function f

(

t − tp,h
)

 satisfies 
∫∞
−∞f

(

t − tp,h
)

dt ≈ 1 and the standard deviation σf ≈ 1.435 . Upon subjecting KDE, 
P
(k)
p,m , becomes

In this study, we constructed the statistical score matrix on which KDE was 
employed and used it for determining to which k cohort a given subject would belong.

Construction of a covariance correlation matrix and a predictor for the severity degree 

of AD

Within each group of the average cortical thickness, the severity degree of AD for a 
given subject is estimated by the following strategy. First of all, we transformed the corti-
cal thickness matrix tp,h at essential ROI vertices p for a subject h into the normalized 
matrix t ′p,h  such that

Here, the product of t ′p,j by its transpose t ′p,i
T results in the square matrix 

t ′′ij = t ′p,i
T · t ′p,j , and then its normalized matrix (called by a covariance correlation 

matrix) Cij is defined by Cij = t′′ij/max
{

t′′ij
}

 , where max
{

t′′ij
}

 is the maximum value 
of elements in the square matrix t ′′ij . The larger the value of Cij , the higher the covariance 
correlation between a subject i and a subject j in their profile of the cortical thickness 
at essential ROI vertices. Based on this covariance correlation matrix, we defined the 
severity degree AD for a given subject i by

where CAD−CN
i = �Cij�j∈AD − �Cij�j∈CN . The severity degree of AD ranged from 0 for 

the basin of CN state to 1 for the basin of AD state. Rank-ordering this degree in ascend-
ing order illustrates that a subject i with the larger (or smaller) value of the severity 
degree is more prone to AD (CN) state.

Results
Identification of essential ROI vertices at which the distributions of cortical thickness of CN, 

MCI, AD subjects are distinguishable

Although the averaged cortical thickness of subjects with AD is generally known to be 
thinner than that of CN or MCI subjects, the distribution curves of averaged cortical 
thickness for the cohorts are not well distinguishable except near both ends of the distri-
bution curves as demonstrated in Fig. 1A. This illustrates that a subject can be CN even 

(5)al = 0.5 erf
(
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∣

∣l
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∣

)
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−
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Fig. 1 The classification of 1516 brain images into four groups by the average cortical thickness. A The 
distribution of average cortical thickness of subjects in the CN (black), MCI (cyan), and AD (magenta) cohorts. 
Above arrows point to the range of average cortical thickness. Subject number, sex, and age for each group 
are listed in Table 1. B For the cortical thickness group D, the degree of separation of the distribution curve 
of average cortical thickness between CN subjects and AD subjects is presented in the form of black points. 
The closer to the origin point (0, 0) the degree of separation of two distribution curves of average cortical 
thickness is, the less distinguishable they are (Additional file 1: Fig. S1). Black points residing outside of 
the blue-dashed line (Z =  ± 1.5) are ROI vertices, and black points residing outside of red-dashed line (Z 
values are listed in Additional file 1: Table S1) are essential ROI vertices. C For each group of average cortical 
thickness, ROI vertices at which the thickness of the cortex for CN subjects is thicker (thinner) than that of 
the other subjects with MCI or AD is represented by cyan (blue) color. As a similar procedure, ROI vertices 
for MCI subjects is thicker (thinner) than the other cohorts is represented by green (dark green) color. Also, 
ROI vertices for AD subjects is thicker (thinner) than the other cohorts is represented by orange (red) color. 
Especially, the ROI vertices at which the cortical thickness decreases in the descending order of CN-MCI-AD 
is represented by dark red. And the essential ROI vertices are represented by a black color. The ROI vertices 
commonly found from more than three groups of average cortical thickness are presented in Additional 
file 1: Fig. S2, where it shows less congested and clear ROI vertices
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though the averaged cortical thickness is thinner than that of a subject with AD, and 
vice versa. Also, we found that many subjects identified as CN, MCI, or AD have a simi-
lar averaged cortical thickness. This is due to the fact that the average cortical thickness 
for a subject was calculated over all 276,825 vertex points on the cortex, and the corti-
cal thicknesses at most vertices are similar for all subjects, which prohibits us from suc-
cessfully clustering 1552 human brain images into the image of CN, MCI, AD cohorts. 
Therefore, instead of resorting on the cortical thickness of all 276,825 vertex points on 
the cortex, we selected ROI vertices at which the cortical thickness values are distin-
guishable from each other among CN, MCI, and AD. For a fair selection of such ROI 
vertices, we divided the range of the averaged cortical thickness of subjects into four 
(A-D) different regions (for the detail, see the second section in methods).

Figure  1B illustrates how we identified ROI and essential ROI vertices. The x-axis 
(

�tp,h∈CN� − �tp,h∈AD�
)

/

√

σ
2
p,h∈CN/np,h∈CN represents the degree of separation between 

the distribution curves of cortical thickness for CN subjects and AD subjects at a vertex 
p normalized by the dispersion of the cortical thickness of CN subjects, which is quanti-
fied by the value of its Z score. The y-axis 

(

�tp,h∈CN� − �tp,h∈AD�
)

/

√

σ
2
p,h∈AD/np,h∈AD 

represents values normalized by the dispersion of the cortical thickness of individuals 
with AD. Therefore, the x-values (y-values) at a vertex point p represent the degree by 
which the distribution of cortical thickness at this point p of CN (AD) subjects is distin-
guished from averaged cortical thickness of subjects with AD (CN). It means the larger 
the value of (ZCN−AD

p )

2 = [x−2 + y−2]−1 is, the two distribution curves are more distin-
guished each other (for the illustration, see Additional file 1: Fig. S1). The ROI cut-off 
line is defined by points satisfying 

∣

∣

∣
ZCN−AD
p

∣

∣

∣
= 1.5 , and the distribution of cortical thick-

ness of CN subjects and individuals with AD is clearly distinguished at those points sat-
isfying 

∣

∣

∣
ZCN−AD
p

∣

∣

∣
> 1.5 (outside of the ROI cut-off line).

Figure  1C shows ROI vertices for each of the cortical thickness groups (A-D) by 
colored points on the white cortex, at which the thickness of the cortex is either thicker 
or thinner particularly for one cohort compared with that of two other cohorts. These 
ROI vertices are widely distributed on the cortex, and their locations are not fixed but 
vary depending on the groups A to D. We uncovered, however, that the medial tempo-
ral lobe, known to be very important for memory formation, is always indicated by a 
red or dark red color irrespective of the groups A to D (Additional file 1: Fig. S2). This 
implies that the cortical thickness values of the medial temporal lobe for subjects with 
AD are characteristically thinner than those of CN subjects or individuals with MCI (red 
color), and this decrease occurs in the following descending order: CN-MCI- AD (dark 
red color). The medial temporal lobe is the region where the cortical thickness gradu-
ally decreases as AD severity increases and therefore is the critical region necessary for 
determining the AD cohort and the severity degree of AD. We also noted that the corti-
cal thickness at the orange-colored region for subjects with AD is thicker than that for 
CN subjects or those with MCI. This has nothing to do with the damage in the cor-
tex but contributes to the increase in the accuracy for predicting the AD cohort since it 
could provide better distinguishability of subjects with AD from CN subjects and those 
with MCI.
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Fig. 2 The character of score matrix for each group of average cortical thickness. A For a given group of 
average cortical thickness, three kinds of heat maps illustrate the process starting from the cortical thickness 
matrix at all 276,825 vertices to that at only 564 essential ROI vertices, and then construction of the score 
matrix. The dimension in the x-axis of the cortical thickness matrix at all 276,825 is too large to draw, we 
placed the blank in the middle to abbreviate the large dimension of the x-axis. B The results of singular value 
decomposition analysis on score matrices, which are composed of 547 CN, 722 MCI, 247 AD human brain 
images and used for self-recognition test. For each group of average cortical thickness, six singular vectors 
corresponding to the six largest singular values are presented. Here, x-axis is m value defined in the third 
section of methods, and y-axis is an arbitrary unit for the singular vectors. For each graph, the singular vector 
components for CN, MCI, and AD subjects are plotted by black, cyan, magenta colors, respectively. C The 
results of singular value decomposition analysis on score matrices, which are composed of 363 CN, 480 MCI, 
163 AD human brain images as a training set and used for the first iteration of the stratified threefold cross 
validation test. The other results of that used for the second and third iterations of the stratified threefold 
cross validation test are presented in Additional file 1: Fig. S3
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Character of statistical score matrix and classification of subject’s cohort

The third section in methods described the detailed procedure of constructing the 
statistical score matrix for determining a subject’s cohort within each group of the 
average cortical thickness (Fig.  2A). In order to judge how well the statistical score 
matrix distinguishes CN, MCI, and AD cohorts from each other before we predict the 
cohort of a new subject, we performed the singular value decomposition (SVD) analy-
sis on the combined statistical score matrix  S(All) which consists of matrix elements 
of  S(CN),  S(MCI), and  S(AD). We used the SVD character of a matrix that a given matrix 
can be reconstructed as a linear combination of the products of two singular vectors 
weighted by corresponding singular value. Since the reconstructed matrix from the 
few highest modes of singular values contains the predominant character of an origi-
nal given matrix, one expects that the differences among the cohorts should appear 
in singular vectors of different cohorts. Otherwise, the statistical score matrix  S(All) 
is not reliable nor does it contain the characteristic ingredient of different cohorts. 
Figure 2B, C and Additional file 1: Fig. S3 show the highest six singular vectors cor-
responding to the six largest singular values from SVD analysis of the statistical score 
matrices for each group of the average cortical thickness A to D. Here, it demonstrates 
that elements in the singular vectors v1 to v3 for CN, MCI, and AD follow qualitatively 
a similar trend, meaning that these compose the fundamental default modes, whereas 
those in v4 to v5 follow a different trend and are distinguished each other.

Out of 547 CN, 722 MCI, and 247 AD human brain images provided from the 
ADNI data set and with their cohort predetermined clinically, we performed the self-
recognition test and also the stratified threefold cross validation test for a cohort of 
subject using the 1516 human brain images for each group on the average cortical 
thickness A to D (Table 2 and Additional file 1: Table S2). For the first (second; third) 
iteration of stratified threefold cross validation test, 1006 (1011; 1015) human brain 
images were used as the training set for learning the statistical score matrix and 510 
(505; 501) human brain images were used as an independent validation set. The new 
method presented in this study recognized and predicted the subjects with AD in the 

Table 2 Result for the tests of the cohorts for each group

“Exp.” column, outside of the parenthesis, represents the number of MR images base on the clinical test, and “Score” row, 
inside of the parenthesis, represents the number of MR images base on our test using score matrix. AD, Alzheimer’s disease; 
CN, cognitively normal; MCI, mild cognitive impairment

Exp Group A Group B Group C Group D Correct (%)

Score

CN MCI AD CN MCI AD CN MCI AD CN MCI AD

Self-recognition test

CN 128 8 – 197 12 3 142 11 6 40 – – 507 (92)

MCI 16 139 – 74 155 33 59 120 30 5 88 3 502 (69)

AD – – 13 6 1 60 7 2 75 1 3 79 227 (91)

Stratified threefold cross validation test

CN 122 14 – 177 28 7 133 20 6 31 6 3 463 (84)

MCI 33 122 – 97 130 35 68 103 38 9 75 12 430 (59)

AD 1 – 12 5 9 53 7 11 66 2 8 73 204 (82)
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cohort with more than 91% (self-recognition test) and 82% (stratified threefold cross 
validation test) accuracy, respectively.

There may be a problem that the demographics of the CN/MCI/AD cohort look 
quite different. Therefore, we performed statistical tests to check whether there are 
significant demographic differences between CN/MCI/AD cohorts. We checked 
through p-value whether the distribution of age within each group showed statisti-
cally significant differences (Additional file 1: Table S3). It can be said that there is no 
statistically significant difference because all p-values have values greater than 0.05. 
Since p-value cannot be calculated with respect to female percentage, we performed 
the reanalysis of the cortical thickness data by taking equal ratio between female and 
male in the demographics of the participants in Table 1. Even if the sex ratio was set 
to 1:1, our results were robust (Additional file 1: Table S4).

Estimating the AD severity of subjects by a new predictor of covariance correlation matrix

Developing a quantitative measure to tell the degree of AD severity for a given sub-
ject is very important for diagnosing and clinically treating patients with MCI and 
AD with the different degree of AD. In this study, we already identified essential ROI 
vertices and constructed the statistical score matrices as an initial classifier ensuring 
the prediction of subjects with AD at more than 80% accuracy that they belong to the 
AD cohort. Thus, we extracted the cortical thickness profile (or vector) at essential 
ROI vertices for all brain images, and constructed the covariance correlation matrix 
between them. Then we calculated the correlation between the profile vector for a 
given subject’s image with that of patients with AD, to estimate the degree of AD 
severity for a given subject relative to patients with AD (for the detail, see the Eq. (8) 
in the fourth section in methods and Fig.  3A). The personalized and quantitative 
severity degree of AD (the Eq. (8)) is plotted at the right-bottom graph of Fig. 3A for 
each subject of CN, MCI, AD cohort of the group D in the ascending order. The val-
ues of severity degree of AD were distributed around the averaged value of 0 (ranging 
from about -0.5 to + 0.5) for subjects with CN, 0.5 (ranging from about -0.2 to + 1.2) 
for subjects with MCI, and 1.0 (ranging from about + 0.2 to + 1.5) for subjects with 
AD, respectively. The distribution of the severity degree for subjects with MCI was 
laid across both ranges of those for CN and AD, which points out that this is the 
intrinsic source of the low success ratio in determining the AD cohort of subjects 
with MCI. One could unfold and sort out quantitatively the broad spectrum of the 
AD severity for MCI subjects in that whether they are prone to CN or AD. Given a 
new person for diagnosing the AD state, one of the cohort CN, MCI, AD was assigned 
by the Eq. (3) and the personalized and quantitative severity degree of AD was esti-
mated by the Eq. (8). Then, with these two qualitative- and quantitative-determinants, 
one may infer that a new person with the estimated severity degree below 0.0 is most 
likely to be CN, with that between 0.0 and 0.5 might be CN or MCI prone to CN, with 
that between 0.5 and 1.0 might be MCI prone to AD or AD, and with that above 1.0 is 
most likely to be AD state.

We constructed the covariance correlation matrices for all groups A, B, C, D of the 
average cortical thickness and observed the common pattern in the matrices that sub-
jects with AD (CN), possessing a strong correlation among themselves are clustered 
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Fig. 3 Covariance correlation matrix and severity degree of AD. A The left-top heat map is the covariance 
correlation matrix for group D of average cortical thickness. The x- and y-axes represent the indices 1 to 40 
for CN subjects, 41 to 136 for MCI subjects, and 137 to 219 for AD subjects. Here, red (blue) color represents 
the high (low) correlation between two subjects at the essential ROI vertices. The extra E-cohort color bar 
at the right of the heat map represents the clinically determined cohort of CN subjects and subjects with 
MCI and AD denoted by black, cyan, and magenta colors, respectively. The left-bottom graph illustrates 
the personalized severity degree of AD for each subjects of the group D in terms of a quantitative value, 
ranging from 0 for the basin of CN state to 1 for the basin of AD state (for the detail, see the fourth section 
in methods). The average values of this severity degree in each cohort are denoted by horizontal lines, 
respectively. The left panel is reordered into the right panel according to the ascending value of the severity 
degree in each cohort. For those subjects with MCI, the distribution of severity degree of AD is very broad. 
One can sort out the broad spectrum of the AD severity for MCI subjects in that whether they are prone to 
CN or how much they are progressed toward AD. B The reordered covariance correlation matrices for A, B, C, 
and D groups of average cortical thickness together with the determination of CN (black), MCI (cyan), and AD 
(magenta) cohorts by clinical (E-cohort color bar) exam and by the stratified threefold cross validation test 
of this study (S-cohort color bar). The original covariance correlation matrices for the four groups of average 
cortical thickness are provided in Additional file 1: Fig. S4
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at the top-right (bottom-left) corner, represented by the cluster of red colors (Addi-
tional file 1: Fig. S4). Also, we presented the reordered covariance correlation matri-
ces by the severity degree of AD and the results to which one of the CN, MCI, AD 
cohorts each human brain would belong, based on both the clinical test and our 
stratified threefold cross validation test (Fig. 3B). After comparing the result from our 
independent validation test with that of the clinical test, we noted that those subjects 
which were predicted to belong to the MCI cohort by the clinical test and yet esti-
mated to have the higher (lower) severity degree of AD by our estimation, were pre-
dicted to belong to the AD (CN) cohort from the our validation test.

Discussion
Based on the cortical thickness data of 1516 human brain images from the ADNI data 
set, we presented a new algebraic determinant for both (1) the identification of the 
cohort (CN, MCI, AD) a given subject would belong to and (2) the quantitative esti-
mation of the severity degree of AD for a given new person (Fig. 4). A total of 1516 
human brain MR images were partitioned into four groups by the average cortical 

Fig. 4 Flow chart for the cohort determination and the estimation of the severity degree of AD. The left 
shows the process of constructing the score matrix and covariance correlation matrix from the cortical 
thickness big data of subjects derived from the ADNI data set. The right shows the process of determining 
the cohort and the severity degree of AD for a new given subject
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thickness of each subject. Out of 327,684 vertices on the cortex, a few hundred essen-
tial ROI vertices for each group were identified, which were enough to distinguish the 
cortical thickness distribution of the CN, MCI, and AD cohorts from each other. Sta-
tistical score matrices using the cortical thickness on the essential ROI vertices were 
constructed as an initial classifier for determining the cohort of a given subject. Out 
of 547 CN, 722 MCI, and 247 AD subjects predetermined clinically, the success ratio 
for self-recognizing their cohort was 92% with CN, 69% with MCI, and 91% with AD 
subjects. On the other hand, employing 1006 human brain images for control and 510 
human brain images for independent validation, the stratified threefold cross-valida-
tion test gave the correct prediction rate of 84% with CN, 59% with MCI, and 82% in 
subjects with AD; this is in the overall agreement with the results of clinical determi-
nation. Using the quantitative severity degree of AD for subjects, we could explain the 
reason why the inevitable uncertainty in the determination of the MCI cohort arouse 
by the very broad distribution of the severity degree of AD which MCI subjects pos-
sess intrinsically. We suggested that the severity degree of AD presented in this study 
would be a realistic measure for the quantitative and personalized diagnosis of a given 
subject instead of tri-partitioning the classification of a subject’s cohort only by CN, 
MCI or AD. It is the continuous degree of AD severity for a given subject along the 
scale from 0 for the basin of CN state to 1 for the basin of AD state. One could sort 
out quantitatively the broad spectrum of the severity degree of AD for MCI or AD 
subjects with the different severity degree in that whether they are prone to CN or 
how much they are progressed toward AD.

Limitations
We noted above that the correct prediction rate of cohort for MCI subjects is 59% which 
is lower than 84%, 82% for CN and AD subjects, respectively. This is because, as repre-
sented in Additional file 1: Fig. S2, there are no particular cortex regions in a brain, at 
which the cortical thickness is markedly different for MCI subjects compared to those 
for CN and AD subjects. Despite of such difficulties in predicting the cohort of subjects 
with MCI, we introduced a new quantitative determinant “the severity degree of AD” 
so that we could identify MCI state by the quantitative manner as an intermediate one 
between CN and AD states (Fig. 3A). Therefore, instead of trying to single out MCI state 
as the one which is distinctively distinguished from CN and AD states, we focused on 
accessing how much a given subject with MCI possesses the similar character with that 
of subjects with AD. Our ultimate mission in the future would be to verify how much the 
severity degree of AD for subjects with MCI will be correlated with the occurrence rate 
of AD in a longitudinal study.

Conclusions
This study not only provided a straightforward algebraic determinant to analyzing the cor-
tical thicknesses of human brains but also suggested quantitative measures by which one 
could estimate both the cohort and the severity degree of AD for a given new subject based 
on the neuro-images from the structural MRI. The MRI data of a larger number of human 
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brains could also be implemented into this study in a systematic and robust manner, which 
would facilitate the better diagnose of AD with the different degree of dementia.
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